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Linear Hamiltonian systems with an arbitrary number of degrees of freedom, which depend smoothly on a vector of real 
parameters, are investigated. All possible singularities of the boundary of the stability domain of Hamiltonian systems of general 
position are determined and described for the case of two and three parameters. In the first approximation, the geometry of 
these singularities (the orientation in the parameter space, angles, etc.) is determined on the basis of the first derivative of the 
matrix of the system with respect to the parameters, as are the eigenveetors and generalized eigenvectors evaluated at the singular 
point. A detailed investigation is made of gyroscopic systems as a special ease of Hamiltonian systems. As mechanical examples, 
an account is given of the problem of the stability of the oscillations of a tube through which a fluid is flowing, and of the stability 
of the motion of a two-body system. The tangent cones to the stability domains of these systems at singular points of the "cusp" 
and "dihedral angle" type, which arise on the boundaries of these domains, are found. © 1999 Elsevier Science Ltd. All rights 
reserved. 

All types of Jordan structures that may occur in the general position for two- and three-parameter 
families of Hamiltonian matrices have been listed [1]. In what follows we will determine and describe 
all forms of singularity of the boundary of the stability domain in the general position for Hamiltonian 
and gyroscopic systems in the case of two and three parameters. The geometry of these singularities 
will be determined in the first approximation from the first derivatives of the matrices of the system 
with respect to the parameters, as well as the eigenvectors and generalized eigenvectors evaluated at 
the singularity. The proofs are based on perturbation theory for eigenvalues of matrices that depend 
on parameters [2, 3], and on the theory of miniversal deformations of Hamiltonian matrices [1]. The 
methods developed below may be used to investigate singularities in the case of more than three 
parameters. These methods and the results obtained through their application constitute a further 
development and extension of the approach to investigating singularities used previously [4] to study 
singularities of the boundaries of stability domains of families of non-symmetric matrices. 

1. B I F U R C A T I O N S  O F  T H E  I M A G I N A R Y  E I G E N V A L U E S  O F  
H A M I L T O N I A N  M A T R I C E S  

We will consider a mechanical system with m degrees of freedom described by canonical Hamiltonian 
variables q l, q2 . . . . .  qm, P l,P2 . . . .  , Pro. We will represent these variables as the components of a vector 
x ~ R 2m, qi = Xi, Pi = Xm+i (i  = 1 . . . .  , m )  and assume that the mechanical system has a Hamiltonian 

r H = x Ax/2, whereA is a real symmetricsquare matrix of order 2m which depends smoothly on a vector 
of real parameters h = (hi, h2 . . . . .  hn)" but does not depend on time. 

If we introduce a square partitioned matrix 

II ° "LI J= -I~ O 
where Im and O are the square identity and zero matrices of order m,  respectively, then the system of 
canonical Hamilton equations tl = l ip,  p = -Hq may be written in the form [5] 

dx/dt  = JAx (1.1) 

Systems described by Eqs (1.1) are known as linear Hamiltonian systems and the matrix JA is called a 
Hamiltonian matrix. 

Consider the eigenvalue problem for system (1.1) 
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[JA - 7~I]u = 0 

where ~. is an eigenvalue u is an eigenvector of dimension 2m and I is the identity matrix of order 2m. 
The eigenvalues L1, ~.2 . . . . .  ~.2m are determined from the characteristic equation [JA-  LI] = 0. The complex 
eigenvalues of the Hamiltonian matrix JA form quadruplets ~., ~, -~,, -L of points symmetrically placed 
with respect to the imaginary and real axes in the complex plane, and doublets ~., -~. when they are real 
or pure imaginary; the algebraic multiplicity of the eigenvalue ~. = 0 must be an even number [6]. 

Consider a point h = h0 in the parameter space. For our subsequent investigations we will need 
relations that define the bifurcation of multiple eigenvalues of the matrix JA0 -- JA(h0) when the 
parameters are perturbed. To that end, we impart an increment to the parameter vector: h = h0 + ee ,  
where e > 0 is a small parameter and e ~ R n an arbitrary variation vector. Because of the perturbation 
in the parameter vector, the eigenvalues will also receive increments which, depending on the Jordan 
structure of the matrix JAo, admit of different representations. 

1. Suppose the matrix JA0 has a pure imaginary eigenvalue Z. 0 = ico (for a zero eigenvalue, co = 0), 
associated with which is a Jordan cell of order k. Let u0, u~ . . . . .  ug-1 and v0, vl . . . . .  Vk-1 denote the 
Jordan chains of the direct and adjoint problems, which satisfy the following equations 

[ J A o  - i t o I ] u o  = 0 ,  

[JAo - i o ~ l ] u i  = Uo, 

[ J A o  - i coI ]u t_ i  = uk_2, 

[JAo - icoI]*vo = 0 

[JAo - icoI]*vl = Vo 

[JAo - itoI]*vk_l = vt_ 2 

We introduce normalization conditions V0*Uk_ 1 = 1, V~k-1 = 0 (j ----- 1 . . . . .  k - l ) ,  which, given 
fixed Uo . . . . .  Uk_l, uniquely determine the vectors v0 . . . . .  Vk_ i. Define vectors fy = (fj, f ) l  2 . . . . .  : ) T  E 

(j = 0 . . . . .  k - l )  with components 

• k - j - J  * 3A 
fJ  = - t  L v,-J  - - ' - u  s , ,  l = 1 . . . . .  n ( 1 . 2 )  

r=O dht - 

where the derivatives with respect to the parameters are evaluated at the point h = h0. The vectors f0, 
. . . .  fk-1 are real and do not depend on the choice of the chain of vectors u0 . . . .  , Uk-1. They will be 
used later to describe the geometry of the singularities. 

The case k = 2 is considered separately. Here, the expressions for the components of the vector f0 
may be transformed to 

( , O A  ) , 
f s  = -  U o ~ s  u0 (ul[Aa +itx~J]Ul)-i (1.3) 

For convenience, the zero subscript of the vector f0 is omitted in (1.3) and in what follows (for k = 2). 
In terms of  the vector f, the bifurcation of a double eigenvalue ~ = ico into two simple eigenvalues is 
described as follows [2, 3]: 

~, = ira_+ ( ~ ,  e)e + o(e)  (1.4) 

(the parentheses denote the scalar product in Rn). It follows from the symmetry of the eigenvalues about 
the imaginary axis and from (1.4) that a double eigenvalue k0 = ico bifurcates into two pure imaginary 
eigenvalues if (f, e) < 0. 

2. Consider the case in which the matrix JAo has a double imaginary eigenvalues Zo =/co ~ 0, associated 
with which are two linearly independent eigenvectors u' and u". We choose these vectors so that 
they satisfy an orthogonality condition u '*Ju" = 0. Define real constants bl, b2 and vectors ~ --- 
(g ) , . . . ,  gjn)r ~ Rn (j = 1, 2, 3) by the formulae 

b I = - i u '  *Ju ' ,  b 2 = - i u "  * J u "  

( ,.~)A ,~ ( , , .OA ,,~ ¢ OAu, , )  
g [ = / u  - - u J b 2 - l u  - - u  lbl ,  g~+ig~=2 Ib~-~lb2l u'*~S:-_ 

t, J L 2h, J t a n  s 

(1.5) 

where the derivatives with respect to the parameters are evaluated at the point h = ho. 
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The bifurcation of the double eigenvalues L0 = ito when the parameters are perturbed is determined 
by the expression X = iro + ~1~ + o(~), where the two values of the first correction g are found by solving 
the following quadratic equation [2, 3] 

det[u~Atu/+lm*Ju/]=0, i , j = l ,  2; A l = ~ 3A 

It can be shown that the double eigenvalue X0 bifurcates into two pure imaginary simple eigenvalues 
if 

D = "-(gl' e) 2 -sign (bib 2)[(g2, e) 2 + (g3, e) 2 ] < 0 (1.6) 

and into two complex eigenvalues with non-zero real parts of opposite sign if D > 0. 
3. Consider the case in which the matrix JAo has a double eigenvalue L0 with linearly independent 

eigenvectors u' and u" which we choose to be real and which satisfy the normalization conditions 
u " J a "  = 1. We introduce kl, k2, k12 ~ ~ with components 

k~ u, T~A , _ u , , r ~ A u , ,  OA ,, 
= - - U ,  k~ k~2 = u  'T  ~h~ - ~ , ~ u  , s = l  ..... n (1.7) ahs 

In terms of these vectors, the bifurcation of the double eigenvalue X0 = 0 into two simple eigenvalues 
is described by the relation 

~, = + f l - ~ - e  + O(e), D 1 = (k12, e)  2 - (k l ,  e ) (k2 ,  e)  (1.8) 

If D1 < 0, the double zero eigenvalue bifurcates into two pure imaginary simple eigenvalues. 

2. S I N G U L A R I T I E S  OF THE BOUNDARIES OF STABILITY DOMAINS 
OF FAMILIES OF HAMILTONIAN MATRICES 

Let us investigate the stability of the trivial solution x = 0 of the Hamiltonian system (1.1). The solution 
is stable in Lyapunov's sense if and only if all the eigenvalues are pure imaginary and semi-simple. The 
point h -- h0, to which there correspond only simple pure imaginary eigenvalues X = -4- i¢o ~ 0, is always 
an interior point of the stability domain, while the points on the boundary of the stability domain (BSD) 
are characterized by the existence of multiple pure imaginary or zero ~. (when the other eigenvalues 
are simple and pure imaginary) [6]. 

We shall classify the points of the BSD according to the type of Jordan structure of the Hamiltonian 
matrix, which will be denoted by the product of the determinants of the Jordan cells corresponding to 
multiple eigenvalues [7]. For example, ( -  itol)3( + - i~2) 2 means that there are a pair of three-fold 
eigenvalues L = -+ i¢o 1 :~ 0 with Jordan cells of order 3 and a pair of double eigenvalues ~. = _+ i{o 2 ;~ 
0 ,  CO 2 :# CO 1 with Jordan cells of order 2; 00 denotes the existence of a double eigenvalue ~. = 0 with two 
Jordan cells of first order; and so on. It is understood that unwritten eigenvalues are simple and pure 
imaginary. 

The BSD consists of smooth hypersuffaces, which may have various singularities. At non-singular 
2 + 2 points they are described by matrices of types 0 and (_ito) [1]. The bifurcation of a double eigenvalue 

~0 = it~ (or k0 = 0) in the neighbourhood of a non-singular point of the BSD is described by (1.4). 
Note that the other eigenvalues remain simple and pure imaginary in the neighbourhood of that point 
[6]. It follows from (1.4) that when (f, e) < 0 the double eigenvalue ~0 splits along the imaginary axis 
(stability). But when (f, e) > 0, perturbation of the parameters results in the appearance of an eigenvalue 
with positive real part (instability). Vectors e tangent to the BSD are determined from the condition 
(f, e) = 0. Consequently, the vector f, evaluated at the point under consideration for ~ = io~ (or ~ = 
0), is normal to the BSD and lies in the instability domain. The static and oscillatory forms of stability 
loss at the points 02 and (__.i¢o) 2 are known in the engineering literature as divergence and flutter, 
respectively. 

In the case of general position, the types of singular points of the BSD of two-parameter families 
of Hamiltonian matrices are singled out from the general list of singularities of such matrices, which 

4 3 2 + 2 2 ,,~ has been determined before [1]: 0 ,  (__.its), 0 (_ion), (_+Ro) (-+io~2). 
In the sequel we will need the concept of the tangent cone [8]. The tangent cone to the stability domain 

at one of its boundary points is the set of directions of vectors e along which there is a curve, lying within 
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the stability domain, issuing from the point in question. The tangent cone is said to be non-degenerate 
if it cuts out a set of non-zero measure on a sphere. The tangent cone describes the stability domain 
in the neighbourhood of the point in the linear approximation and contains the basic information about 
the geometry of the singularity. In this section we shall consider singularities with non-degenerate tangent 
cones; singular points with desenerate tangent cones will be considered in the next section. 

Consider a point of type 0"(__.ico) 2. By analogy with the points of type 02 and (_ico)2 considered 
previously, if (fo, e) < 0, (1/`0, e) < 0 (the subscript of the vector denotes the eigenvalue for which it is 
evaluated), then the double eigenvalues X = 0 and X = -ico bifurcate along the imaginary axis (stability). 
If one of the inequalities is reversed, perturbation induces the appearance of an eigenvalue such that 
ReX > 0 (instability). The singular point in question is a corner point of the BSD. The vectors t ° and 
f'o are the normals, directed into the stability domain, to the corresponding sides of the angle (Fig. 1, 
the stability domain is denoted by S). The singularity (_icol)2(__.ico2)'is also a corner point of the BSD, 
for which the vectors 1/̀ °1 and 1/̀ 02 are, similarly, normals to the sides of the angle, directed into the 
stability domain (Fig. 1). The tangent cones to the stability domain at points of type 02(_ico) 2 and 
(--icol)2(--ico2) 2 have the form 

Ko2(±/~)2 = {e :(fo, e)~<0, (f/o, e)~<0} (2.1) 

K(+ioal)2(+it~2)2 = {e: (fiOl, e)~ 0, (fi`02, e)~< 0} (2.2) 

(the inequalities are not strict because a tangent cone is a closed set). The remaining singularities of 
two-parameter families 04 and (__ico)a are cuspidal points (degenerate tangent cones) and will be 
considered in the next section. 

With three parameters, the singularities of the BSD in general position comprise smooth curves of 
the Woe 04, (+-ico) 3, 02(--ico) 2. (+.icol)2(±ico2) 2, as well as isolated points of the types (±ico)(±ico), 00, 
(__.ion) ~1, 06, 04(__.ico) 2, (±ico)302, (±icol)302, (±icol)  3 (±ico2) 2 [1]. 

2 +  2 2 Curves of the type (--/CO 1 ) and (_+icon) (-----ico2) form an edge of the BSD, as in Fig. 2. The singularity 
at a point of such a curve is called a "dihedral angle", and the tangent cone is described by Eqs (2.1) 

2 2 and (2.2). The vectors f0, 1/`0 for a point of an edge of type 0 (_+ico) are normals to the sides of the 
dihedral angle, lying in the instability domain. The tangent vector to the edge e~ is orthogonal to both 
vectors f0 and 1/,o and may be found as their vector product e~ = f0 x 1/`0. Similarly, the tangent vector 
to an edge of tvoe (+icol)2(-----ico2) 2 may be found as e~ = 1/̀ 0~ × 1/̀ 02. 

At points 0r('__.icol)2(--.ico2) 2 and (±icol)2(±ico2)2(±ico3) 2 one obtains singularities of the "trihedral 
,, 2 2 2 2 angle type (Fig. 2). These points differ from 0 (--.ico) and (±icol) (±ico2) in the presence of one more 

pair of double eigenvalues of the type (±ico) ", which leads to another restriction on the vector e lying 
in the stability domain. The tangent cones to the stability domain are defined by the relations 

Ko2 (±i~j)2 (±ico2)3 = {e : (fo, e) ~< 0, (fiooj, e) ~< 0, (f ira2 , e)<~ 0} (2.3) 

¢o 

Fig. 1. 

Fig. 2. 
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2 2 2 = l e : ~ f i t O l , e ) < ~ O ,  t x / , ~ , , K 
(±i¢01 ) (+ico 2 ) (+/to 3) (2.4) 

Three edges issue from the singular point 02(±io~1)2(±io2) 2, in the directions e~l, eT2, e~3, each 
orthogonal to two of the vectors fo laOl, f, o2 and pointing in the direction opposite to that of the third 
vector. For example, e~ = f/o,, x f'm, where the sign is chosen so that (fo, e~) < 0. Similar relations 
hold for the direction vectors of the edges in the case of the singularity (±io~1)2(__.ic02)2(±k03) 2. 

The point 00 corresponds to a singularity of the "cone" type (Fig. 2). The bifurcation of the double 
eigenvalue Zo = 0 in this case is described by Eq. (1.8). The bifurcation takes place along the imaginary 
axis (stability) if (k12 , e) < (kl, e)((k2, e) and along the real axis (instability) if the reverse inequality is 
true. The tangent cone to the stability domain at a point of type 00 has the form 

KOO = {e : (k12, e) 2 ~< (kl, e)(k2, e)} (2.5) 

A point of the type (±ico)(±io~) in the case of a positive product blb2, where bl and b 2 are defined 
in (1.5), is an interior point of the stability domain and does not form a singularity. This follows from 
the fact that the condition for bifurcation of a double eigenvalue ~. = io~ along the imaginary axis (1.6) 
takes the form - (gl, e) 2 - (g2, e) 2 - (g3, e) 2 < 0 and is satisfied for all directions e (if the vectors gl, g2, 
g3 are linearly independent). If bib 2 < 0, one obtains at (±io))(__io~) a "cone" type singularity (Fig. 2). 
The condition for bifurcation along the imaginary axis in this case is (gl, e) 2 ~> (g2, e) 2 + (g3, e) "2, Whence 
we obtain the following expression for the tangent cone to the stability domain 

K(+i to) ( :~  ) = {e : (g l ,  e )  2 ~> (g2, e) 2 + (g3, e) 2} (2.6) 

Define vectors 

a = g2 × g3, b = -g2 × gl,  C = - g l  × g3 

a ' = k l 2 x ( k 2 - k l ) ,  b ' = - k 1 2 x ( k  1+k2) ,  c ' = k 2 X k l  

In terms of these vectors the tangent cone (2.6) may be written in the form 

K(,,i,o)(±,.~)= { e : e = t ( a + d ( b s i n c t + c c o s t ~ ) ) ,  t, c te  R, d e  [0, 1]} (2.7) 

The tangent cone (2.6) admits of an analogous representation, with a, b, c replaced by a', b', c'. 
The vectors just defined have a readily understood geometric meaning. For example, the vector t(a 

+ b sin a + e cos a), with t fixed and ot varied from 0 to n, describes an ellipse in the parameter space. 
This ellipse is section of the cone by a plane parallel to the vectors b and c (Fig. 3)~ 

Singular points of the type 0 4, (±ion) 3, 04(---i0~) 2, (±i0~)302, (±i¢01)3(-i¢02) 2, (--.ion), 06 are associated 
with degenerate tangent cones and will be considered in the next section. 

In the case of general position, the vectors defining the tangent cone (2.1)-(2.7) form linearly 
independent systems. The linear independence of the vectors defining the tangent cones may be used 
as a criterion for a given singularity to be in general position. Note that in order to evaluate a tangent 
cone to the stability domain one needs to know only the eigenvectors and generalized eigenvectors for 
multiple eigenvalues, as well as the first derivatives of the matrix A with respect to the parameters, 
evaluated at the relevant singular point of the boundary. 

3.  S I N G U L A R I T I E S  W I T H  D E G E N E R A T E  T A N G E N T  C O N E S  

In this section we investigate singularities of the BSD in general position to which there correspond 
degenerate tangent cones. For two-parameter families of Hamiltonian matrices such singularities are 
"cuspidal points" 04 and (±ito) 3 (Fig. 4!,[1]. In the case of three parameters these are "cuspidal edges" 

4 3, .  4" + 2 + 3 2 + 3 -4- 2 ,, ,, 0 and (±i ts) '  Lruncated cuspidal edges 0 and (_ (~ ) ,  (_io)) 0 ,  (-io~1) (-io)2) and trihedral spires 
0 6, (+/ to)  4 (Fig. 5). The BSD for a '  trihedral spire singularity consists of three edges which converge 
at the singularity point, along the tangent, to a common ray. Two of these edges are of the "cuspidal 
edge" type and the third is of the "trihedral angle" type. 

Expressions for the tangent cones at these singular points are given in the following theorem. 

Theorem. The tangent cones to the stability domain at singular points of the boundary of types 04 , 
(±i03)3, 06, (_i0)4, 0n(±ico)2, (±i~)302 ' (±i0~1)3(±ic02)2 are degenerate and have the following forms 
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b 

Fig. 3. Fig. 4. 

Fig. 5. 

Ko4 = {e : (fg, e) = 0, (fo, e) ~< 0} 

K06 = {e: f r ° , e )=  0, f r ° ,e )=  0, (f°,e)~> 0} 

K(±i,~)4 = re: (fgV,e) = 0, ( f [ ' ,e )  = 0, (f~°~, e)~< 0} 

Ko,(±ico)2 = {e : (f°,e) = 0, (f°,e)~< 0, (fi°~,e)~<0} 

K(±,,o)3o: = {e: (f~°',e) = 0, (fl/co, e )~  < 0, (f0, e)~< 0} 

K(±io~,)3(±io~2)2 = {e : (fg °)' ,e) = 0, (f~o~, ,e)~<0 ' (fi(o 2 ,e)~<0 ] 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

where the superscript indicates the eigenvalues at which the vector in question is evaluated. Formulae 
(3.1)-(3.7) hold if the vectors defining the tangent cones constitute a linearly independent system. In 
general position this condition is satisfied. 

Let us describe the main steps of the proof.T 
It has been shown [1] that any family of Hamiltonian matrices JA(h) with a matrix JA(h0) = JAo may 

be represented in the form 

JA(h) -- C(h)JA'(g(h))C-l(h) 

where C(h) is a family of non-singular matrices, g = g(h), g(h0) = 0, g ~ R d is a smooth mapping 
of a neighbourhood of h = h0 into a neighbourhood of g = 0. The family JA'(g) is called a versal 
deformation and is chosen in accordance with the Williamson normal form of the matrix A0 and g is 
the parameter vector of  a miniversal deformation [1]. To describe the family JA'(g) it is sufficient to 

t T t t indicate the form of the Hamiltonian H (g) = x A (g)x/2. The Hamiltonian H (g) may be expressed as 
a sum [1] 

H'(g) = H(l)(g 0)) + H(2)(g (2)) + ... (3.8) 

where H'q)(g (y) = x (y)r A'i(g(Y))x(J)/2 (j = 1, 2 . . . .  ) are the Hamiltonians corresponding to the different 
eigenvalues and which d~epend on the corresponding vectors of variables of the Hamiltonian x 0) and 
parameter vector gq). The vectors x q) and g(Y), evaluated for allj  = 1, 2 . . . . .  and taken together, form 

"~A detailed proof may be found in A. A. MAILYBAEV and A. P. SEIRANYAN., The stability domains of linear Hamiltonian 
systems. Preprint No. 37-98. Institute of Mechanics, Moscow State University, Moscow 1998. 
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vectors x and g, respectively, and the matrix A'(0) corresponding to the Hamiltonian H'(0) of (3.8) is 
the Williamson normal form of A0. 

Since the matrices JA(h) and JA'(g(h)) have the same eigenvalues, the family JA(h) is stable if and 
only if the family JA'(g(h)) is stable. Thus, when the mapping g(h) is known, we can investigate the 
stability of the family JA'(g) instead of the stability of the family JA(h). 

Representation (3.8) enables us to split the system of Hamilton equations for H'(g) into independent 
systems for each term H'o)(g(Y)). The stability of the family JA'(g) in the neighbourhood of g = 0 will 
then be determined by the stability of the systems associated with multiple eigenvalues of the matrix 
JA0, and with those eigenvalues only. The Hamiltonians H~j)(g q)) have been derived [1] in terms of the 
Jordan structure of the corresponding eigenvalues. Using these representations, one can find the tangent 
cones to the stability domain of the family JA'(g) for the types of singularity under consideration. For 
a multiple pure imaginary eigenvalue X0 with one Jordan cell of order k, one can prove the following 
relation for the direction vectors e and e' in the tangent cones in the spaces of the parameters h ~ R n 
and g ~ R d 

(fj,e) = (f~,e'), j = 0  ..... k - I  (3.9) 

where fj, f). are the vectors evaluated by formulae (1.2) for the eigenvalue ~ of the families JA(h) and 
JA'(g) at points h - h0 and g -- 0, respectively. Equations (3.9) enable us using the expressions for the 
tangent cones to the stability domain of the family JA'(g), to find the tangent cones to the stability domain 
of the family JA(h) in the original parameter space. One thus obtains the expressions for the tangent 
cones stated in the theorem. 

4. S INGULARITIES  OF BOUNDARIES OF STABILITY 
DOMAINS OF GYROSCOPIC SYSTEMS 

Consider a linear autonomous gyroscopic system 

M t ~ + G ~ + K ~  =0 (4.1) 

where ~ = (tO1, cp2, • • • ,  ~,n) T ~ ~ is the vector of generalized coordinates; M, G and K are real 
matrices of order m × m and smooth functions of the parameter vector h e R n, such that M T = M > 0, 
G r = --G, K r = K. Writing the solution of Eq. (4.1) in the form • = Ue x*, we arrive at the eigenvalue 
problem 

[~,2M + ~,G + K ] U  = 0 

Equation (4.1) may be written in the form of Eq. (1.1) [5], where 

II _oM-,o,4 oM-l,2 I1oll  =M0+oo,2  4.2, A=U_M_IG/2 M -I x=  W ' 

The matrix A is symmetric and depends smoothly on the vector h. 
The systems of equations (4.1) and (1.1), (4.2), are the equations of motion written in Lagrange and 

Hamilton forms, respectively. The stability domains of the trivial solutions of systems (4.1) and (1.1), 
(4.2) coincide. The singularities of the BSD in general position for Hamiltonian and gyroscopic systems 
which depend on parameters are identical. All results obtained in Sections 2 and 3 for singularities of 
the BSD of Hamiltonian systems are also true for gyroscopic systems (4.1), provided the family of matrices 
A(h) is taken in the form of (4.2). Substituting (4.2) into the relations of Section 1, one can write the 
expressions for the vectors defining the tangent cones directly in terms of the gyroscopic system (4.1). 

1. Suppose that when h = h0 the gyroscopic system has an eigenvalue L = ico (or L = 0) of multiplicity 
k, associated with which is a Jordan chain of vectors U0 . . . . .  U~-i satisfying the equations 

QUo = 0 (4.3) 

QU1 + QxUo = 0 

QU2 + QxUI + Q~Uo/2 = o 

o ° ,  

QUk-1 + QxUk-x + Q~Uk-3/2 = 0 
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where we have used the following notation for the matrix operators 

Q = ~2M(ho) + ~,G(ho) + K(ho), Qz = 2ZM(ho) + G(ho), Qx~ = 2M(ho) 

The chain of vectors V0 . . . . .  Vk-i for the adjoint problem satisfies Eqs (4.3) with the operators Q, Qz, 
Qzz replaced by their adjoints Q*, Q~., Q~.~. 

The normalization conditions for the vectors Uj and Vj are 

VoQzUk_ 1 + I~V;Q~kUk_ 2 = 1 (4.4) 

~V;_IQk~Uk_ 1 -F V;Q~Uk_ 1 -.I- I~V;Q2tzUk_ 2 : 0 ,  j =  l ..... k - I  

Then the components of the vectors fj = (fl . . .  ,f ,])r ~ ~ (j = 0 . . . . .  k - 1) are defined by the relations 

fit =ik - j  V i Q I U j - r  + • V*Qx~Uj-r-i + -  2., VrQxTaUj_r_a (4.5) 
r=O 2 r=O 

.2  ~M . ~G ~ K  2 z  3 M  ~G = 2 ~ M  

QI =~ ~-~ - t+ l~ -~ f+~ ' t  , Qxx = "~'~'t+~-~'t , Qxax ~)h, 

The derivatives with respect to the parameters are evaluated at the point h = h0. 
When k = 2, the components of f0 (or simply f) may be written in the form 

U°QtU° (4.6) 
f l  = U ~ Q U t + U o Q ~ U o / 2  

2. Consider a double eigenvalue ~. = ico ~ 0, associated with which are two eigenvectors U' and U". 
We introduce an orthogonality condition U'*Q~U" = 0. Then the constants bl, b2 and the components 
of the vectors gl, g2, g3 ~ ~ are given by the relations 

ib l = U'*QxU', ib 2 = U"*Q~U" (4.7) 

gl = b2U'*QIU' + bIU"*Q,U", g~ + ig~ = 2 I ~ f i - ~ 2  IU"QtU" 

3. Consider a double eigenvalue ~, = 0 with two eigenvectors U' and U", which we choose to be real 
and such that the normalization conditions U'rG0 U'' = 1, Go = G(h0) are satisfied. The expressions for 
the components of  the vectors kl, k2, k3 e R n become 

k [ = u  .r K ,, . Op---~U, = U  ~p-~-plU, k /2=U ~ p t U ,  1 -1  ..... n (4.8) 

The derivatives with respect to the parameters are evaluated at the point h = h0. 
Note that the matrices of a Hamiltonian or gyroscopic system and their first derivatives with respect 

to the parameters, evaluated at a singular point of the boundary, enable one to determine the geometry 
of the stability domain in a neighbourhood of that point, in the first approximation. 

5. A P P R O X I M A T E  I N V E S T I G A T I O N  OF T H E  S T A B I L I T Y  OF T H E  
O S C I L L A T I O N S  OF A T U B E  C O N T A I N I N G  A F L O W I N G  F L U I D  

As an example of a two-parameter gyroscopic system, we will consider an elastic tube on a hinged support, through 
which a fluid is flowing. The linear differential equation for the vibrations of the tube and the boundary conditions 
have the following form [9] 

-~2w - 32w - ~4w 2~2w ^ 
( m + m f ) ~ . 2  + 2u frnfT"-~'. +P-,l~__4 +mfv f~__2 =o (5.1) 

Ot oxot Ox dx 

where w(x, t) is the deflection of the tube, m, EJ and I are the mass per unit length, flexural stiffness and length of 
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the tube, mf and vf are the mass per unit length and the flow velocity of the fluid and t denotes the time. The 
terms shown in Eq. (5.1) describe the inertial, Coriolis, elastic and centrifugal forces acting on the tube. Damping 
is ignored. 

Solving Eq. (5.1) by the Bubnov--Galerkin method and retaining two terms in the expansions 

2 ~  w(x,t)=91(t)sin-~-+92(t)sin l 

we obtain a system of ordinary differential equations (4.1) for the functions tpl(t ) and ¢p2(t), where [9] 

-=!'0 0 17 oi  ll't 16°4A! (5.2) 

We have introduced here dimensionless parameters ct and A characterizing the relative mass and flow velocity [9] 

u=(16 ~2 mf , A=ralu]12 (5.3) 
k3g) re+m/ g2EI 

If  the relative mass varies in the range 0 ~< mltm < oo, then ct varies in the range 0 ~< ct ~< (16/3n) 2 ~ 2.882. The 
flow velocity parameter A is non-negative, 0 ~ A < oo. 

The characteristic equation for the system, in view of (5.2), is [9] 

~4 + ~2(17 _ 5A + aA) +'4(1 - A)(4 - A) = 0 (5.4) 

The point (4, 3/4) is a singular point of the BSD of the type 04. Indeed, at this point both coefficients of polynomial 
(5.4) vanish. Therefore Z, = 0 is a four-fold root of Eq. (5.4). Setting 

Q Q 0 Q 2 

in Eqs (4.3), we find the corresponding chains of four right and left eigenvalues and associated eigenvalues, satisfying 
the normalization conditions (4.4) 

v0 Vl:l o I :U:l v __l U 
(5.6) 

The presence of linearly dependent vectors should not confuse us, as the chain (4.3) establishes a relationship among 
the three vectors U 1, Uj_ 1, Uj-2. A similar relationship exists for the triple of vectors Vj, Vj_I, Vj_2. 

Using (5.2), (5.6) and (4.5), we evaluate the vectors f0 and t"2 defining the tangent cones to the stability domain 
at the point 04 (A = 4, ct = 3/4) 

I"o--(12,0) r, f2=(lZ/4,--4)r (5.7) 

Thus, formulae (3.1) and (5.7) yield the tangent cone to the stability domain 

K04 ={e=(el,e2)T: e l=O, e 2>~0} (5.8) 

Tangent cone (5.8) consists of a single direction, which defines the orientation of a "cuspidal point" singularity in 
the space of the parameters A, ct. 

The stability domain of the system may be found by analytical means. A necessary condition for stability is that 
the coefficients of the biquadratic equation (5.4) and its discriminant should be non-negative. The corresponding 
strict inequalities define the stability domains in the plane of the parameters h = (A, ct) r 

A LLA A A  )J 

as shown in Fig. 6. Domain 2 is the domain of gyroscopic stability. This result agrees with (5.8), since both the 
curves making up the BSD are tangent at the point 0 4 to the ray A = 0, ct >/0 (Fig. 6). 
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6. T H E  S T A B I L I T Y  OF T H E  R O T A T I O N  OF A STATICALLY U N S T A B L E  
M E C H A N I C A L  SYSTEM 

Consider a mechanical system in a gravity field. The system consists of a vertically mounted motor, 
with two rigid, weightless rods of lengths 22 and I attached in sequence to the rotor of the motor by 
elastic ball-and-socket joints. The end of the second rod is rigidly attached to the centre of a flat disc 
of mass m and radius 22, in such a way that the rod is perpendicular to the plane of the disc (Fig. 7). 
As generalized coordinates we take the set of Krylov angles oti, 13i, 7i (i = 1, 2), which define the position 
of each rod in a frame of reference attached to the rotor. Such mechanical systems were considered 
previously in [10]. 

Consider the stability of the rotation of the system about the vertical axis (I, i ----- ~i = 3'i = 0 ( i  = 1, 2 ) ,  
at constant angular velocity. The system of linearized equations of motion splits into two systems, one 
of which contains only 3'1 and 3'2 and is always stable. The other system has the form (4.1), with 
• = (or1, 131, ct2, 132)', and the non-zero elements of the matrices M = II mi/II, G = II gi/II and K = 
]1 k/j I I are as follows: 

mll = m22 = -g14 = g41 = g23 = -g32 = 4, -gl2 = g21 = 8 

m13 =//131 = m24 = m42 = m33 = m ~  = -g34 = g43 = 2 

kll = k22 = (ql + q2 - 2)/0)2 - 4, k33 = k44 = (q2 - 1)/~ 2 

k13 = k31 = k24 = k42 = --q2/o~ 2 - 2 

The dimensionless parameters ql, q2 and co characterize the stiffnesses of the sockets and the angular 
velocity of rotation of the rotor. 

Consider the point h0 = (3/2, 2~/(2) - 5/2, 2 - "~(2)) r in the space of the parameters h = (ql, q2, co) r. 
The characteristic equation of the system at the point has two pairs of double pure imaginary roots k 
= - i (2  - 42)/4, ~. = _i(2 + ~/(2))/4, associated with which are Jordan chairs of order two. Consequently, 
the stability domain in the space of the parameters h -- (ql, q2, co) r has a singularity of the "dihedral 
angle" type, (+--ic01)2(+--i032) 2. T h e  vectors f'cot and f '~ defining the tangent cones (2.2) are as follows: 

fi~, = .  1 0 8 7 ~  3+2~/~ fivz = _ 2 + ~ 8  9+4~/~ 

2 6 - 4 f l 2  

Using a vector e~ tangent to the edge of the "dihedral angle" and vectors el and e 2 orthogonal to the 
edge and tangent to the faces of the "dihedral angle", having the form 

ex = f ~ t  xfiO~2, el =fic,~ ×e~,  e 2 = e ~  × f  it°z 

we can write the tangent cones to the stability domain (2.2) in the form 

K(+iO~l)2(+it~2)2 ={eie=ote, +[~e I +'~2,cIER, ]~,'~ 90} 

The vectors e,, el and e2 define the geometry of the stability domain in the neighbourhood of the 
singular point h = h0 in the linear approximation (Fig. 8). 
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